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1. Introduction and outline

There is a finite number of distinct two-dimensional toroidal orbifolds, classified by the

crystallographic space groups of the plane [1, 2]. An orbifold by a discrete group of order

greater than two can only be realized if the torus is defined by either a square or a hexagonal

lattice. The basic examples are T 2/Z4 (square lattice), T 2/Z3 and T 2/Z6 (hexagonal

lattice). As string backgrounds, these are rigid: since it is not possible to deform the

shape of the torus (complex structure) without breaking the discrete symmetry that is

gauged, such deformations are not part of the moduli space. As a consequence of this fact,

mirror symmetry relates these toroidal orbifolds to nongeometric backgrounds, that can

be described as asymmetric orbifolds - just applying T-duality - or more interestingly as

Landau-Ginzburg models (see for example [3, 4]).

In this paper we will specialize to the T 2/Z4 orbifold, but the general discussion applies

to the other cases as well. It was shown in [3] that the T 2/Z4 orbifold at the self-dual

radius is equivalent, at the level of the worldsheet CFT’s, to the tensor product of minimal

models A2 ⊗ A2 . This CFT has also a description as a Landau-Ginzburg model with

superpotential WLG = Y 4
1 + Y 4

2 [5, 4]. Using the Landau-Ginzburg description one can
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extend the equivalence to the full moduli space of the two models, identifying polynomial

deformations of the LG superpotential with the Kähler deformations of the orbifold. The

aim of this paper is to extend this correspondence to the open string sector and in particular

to use the mirror description to study D-branes extended in the T 2/Z4 orbifold.

In the past two years there has been much progress in working with branes in Landau-

Ginzburg models [6 – 24], in the framework of matrix factorizations. This approach was

first proposed by M. Kontsevich and was later introduced in the physics literature in [8,

6, 7]. For the LG models that describe (orbifolds of) tensor products of N = 2 minimal

models [25, 5, 26, 4], a useful correspondence has been established between LG matrix

factorizations and boundary states [7, 11, 9, 21 – 23]. It has also been possible in certain

cases to give a geometric interpretation to the LG branes, either by moving to a different

point in moduli space [11] or via mirror symmetry [18].

In the Landau-Ginzburg setup it is natural to look for a set of fundamental branes,

such that all other branes in the model (more precisely we will be considering branes

that preserve B-type worldsheet supersymmetry) can be constructed as bound state of

these. For the T 2/Z4 model, combining the information obtained from the LG analysis

with the known results for boundary states in minimal models (especially [27, 28]) — and

the relation between the two — we are able to give a geometric interpretation to this set

of branes as D1-branes constrained to pass through any two of the orbifold fixed points,

much like fractional branes. This provides a very explicit example of mirror symmetry, in

addition to allowing us to learn more about the properties of branes that are interesting

in their own right.

As mentioned above, a similar analysis could be repeated for other models. In addition

to the main examples of Z3,4,6 orbifolds, for which the equivalence to tensor products of

minimal models is described very explicitly in [3], one can consider modding out these

by various (quantum) discrete symmetries, completing the list of T 2 orbifolds. These

models will have a description as Landau-Ginzburg orbifolds. Higher dimensional toroidal

orbifolds can also be constructed from these basic building blocks. For example, it is very

easy to generalize the computations of this paper to the spacetime supersymmetric T 4/Z4

orbifold limit of K3 ; it could be interesting to study this example in more detail. Also, for

non-supersymmetric backgrounds (such as the one considered in this paper), studying the

dynamics of branes extended in the orbifold might shed some light on the evolution of the

compact spacetime under closed string tachyon condensation, following the line of reasoning

of [29]. We expect that the interplay between Landau-Ginzburg and CFT techniques could

prove useful in analysing all these diverse models.

Organization. The plan of the paper is the following. Section 2 is a review of the

equivalence between the T 2/Z4 orbifold and the tensor product of minimal models A2⊗A2 ,

rewritten from the point of view of mirror symmetry. The remaining sections contain an

analysis of the branes in these models. In section 3 the formalism of matrix factorizations

is used to give a partial classification of B-branes in the Landau-Ginzburg model that

describes the A2 ⊗ A2 CFT. From this analysis we derive some properties of the branes

that are used, in section 4, to give a geometric interpretation of the LG branes as D1-branes
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on T 2/Z4 . The arguments given in this section are based on spacetime intuition and are

not sufficient to give a full description of the branes as boundary states. In order to do

that, in section 5 we make contact with the description of the same branes as minimal

model boundary states. This analysis is more rigorous and allows us to obtain the full

boundary state description of the A-branes on T 2/Z4 , complementing the more heuristic

(but more transparent) discussion of section 4. The details of the map between the T 2/Z4

and A2 ⊗A2 CFT’s, which are used throughout the paper and especially in section 5, are

collected in an appendix.

2. Equivalence of T 2/Z4 and A2 ⊗ A2

The model we consider is a T 2/Z4 orbifold with N = 2 worldsheet supersymmetry. The

coordinates on the torus are (x1, x2) ∼ (x1 + 2πR, x2 + 2πR) , with R =
√

2 in units with

α′ = 2 . It will also be convenient to introduce complex coordinates x± = (x1 ± ix2)/
√

2 .

In terms of these the Z4 action is x± → ω±1x± , with ω = e2πi/4, and similarly on the

fermions. It was shown explicitly in [3] that this model is equivalent to the tensor product

of two N = 2 minimal models of the Ak-series, with k = 2 . In the conventions that we are

following, the minimal model Ak=2 has central charge c = 3k
k+2 = 3

2 and has a description

as a Landau-Ginzburg model with superpotential WLG = Y k+2 = Y 4 . Some facts will be

summarized below and further details can be found in the appendix. This equivalence is

in fact mirror symmetry and the goal of this section will be to describe the correspondence

between the (a, c) chiral ring of the orbifold and the (c, c) chiral ring of the minimal model,

in the LG description. This will be useful later to establish a correspondence between the

branes in the two models by comparing their couplings to the bulk fields.

The identification between the T 2/Z4 orbifold and the A2 ⊗A2 conformal field theory

is established comparing the superconformal algebra, the spectrum and the OPE’s of the

two theories [3]. We adopt the notation

T = −1

2
(∂xi∂xi + ψi∂ψi) T̄ = −1

2
(∂̄xi∂̄xi + ψ̄i∂̄ψ̄i)

G± = ψ±∂x∓ ≡ e±iBL∂x∓ Ḡ± = ψ̄±∂̄x∓ ≡ e±iBR ∂̄x∓ (2.1)

Q = i∂B Q̄ = −i∂̄B

for the superconformal algebra of the theory with target space T 2 . At the selfdual radius

the torus has an enhanced (SU(2) × SU(2))2 symmetry (left- and right-moving), but the

Z4 projection reduces the enhanced symmetry to (U(1))2 . Hence the chiral algebra of the

T 2/Z4 orbifold contains, in addition to the currents (2.1), the holomorphic U(1) current

J =
i

2

[

ei
√

2 x1
L + e−i

√
2 x1

L + ei
√

2x2
L + e−i

√
2 x2

L

]

(2.2)

and a corresponding antiholomorphic current J̄ .
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The chiral algebra of one A2 minimal model can be written in terms of a free fermion

(for general k this would be a Zk parafermion) and a free U(1) boson1:

T1 = −1

2
(∂φ1∂φ1 + ψ1∂ψ1) T̄1 = −1

2
(∂̄φ1∂̄φ1 + ψ̄1∂̄ψ̄1)

G±
1 =

1√
2
ψ1e

±i
√

2φ1L Ḡ±
1 =

1√
2
ψ̄1e

∓i
√

2φ1R (2.3)

J1 =
i√
2
∂φ1 J̄1 =

i√
2
∂̄φ1

The chiral algebra of the tensor product of two minimal models (restricting attention for

the moment to the left-moving sector) will contain the currents T = T1+T2 , G± = G±
1 +G±

2

and two U(1) currents J± = J1 ± J2. One can check that the left-moving currents in (2.1)

take this form under the identifications

i∂x± =
1√
2
(ψ1e

∓iHL + ψ2 e±iHL) with HL =
1√
2
(φ1 − φ2)

BL =
1√
2
(φ1 + φ2) ,

(2.4)

which map the U(1) current (2.2) of the orbifold CFT to the current J− = i∂H of the

A2 ⊗A2 theory. The map for the right-moving currents differs by a sign in the expressions

for HR and BR,

HR = − 1√
2
(φ1 − φ2) BR = − 1√

2
(φ1 + φ2) , (2.5)

because of the different conventions adopted for the right-moving currents in (2.1) and (2.3).

In order to prove that the models are equivalent one also needs to match the primary fields

and their OPE’s and this is done in [3]. In what follows we will look only at the spectrum

of chiral primaries, since we are interested in comparing the topological observables on the

two sides. More details about the complete map between the primary fields are collected

in the appendix.

As a first step we need a characterization of the twisted sectors of the T 2/Z4 orb-

ifold [30, 3] . For the moment we restrict attention to the bosonic fields. There are two Z4

fixed points, with coordinates (0, 0) and (πR, πR) . These correspond to the two conjugacy

classes of the space group of translations and order one Z4 rotations. We denote the bosonic

part of the twist fields associated with these two fixed points by σ
( 1
4
)

0 and σ
( 1
4
)

1 . There are

also four Z2 fixed points, corresponding to the conjugacy classes of the order two rotations

(reflections) and translations. Correspondingly, we have four Z2 twist fields, denoted by

σ
( 1
2
)

00 , σ
( 1
2
)

11 , σ
( 1
2
)

10 and σ
( 1
2
)

01 . The first two are associated with the Z4 fixed points at (0, 0)

and (πR, πR) , while the other two are associated with the fixed points at (0, πR) and

1In (2.1) and (2.3) we have adopted different conventions for the right-moving currents. This is done

to ensure that the twist fields of the orbifold and the observables of the Landau-Ginzburg model (to be

introduced later) belong respectively to the (a, c) and (c, c) ring, as in the usual conventions. This is a

consistent choice because the mirror map Q → −Q , G± → G∓ is an automorphism of the superconformal

algebra.
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σ

( 1

4
)

0

σ

( 1

2
)

11

σ

( 1

2
)

00

σ

( 1

4
)

1

σ

( 1

2
)

01

σ

( 1

2
)

10

x1

x2

2πR

2πR

Figure 1: Fixed points and associated twist fields on T 2/Z4 .

(πR, 0) , which are exchanged by the Z4 action. The Z4 invariant twist fields are therefore

σ
( 2
4
)

0 ≡ σ
( 1
2
)

00 , σ
( 2
4
)

1 ≡ σ
( 1
2
)

11 and σ
( 2
4
)

01 ≡ 1√
2
(σ

( 1
2
)

01 + σ
( 1
2
)

10 ) .

The twist fields of the full superconformal theory are obtained multiplying by eikB/4

the bosonic twist fields of the k-th twisted sector. A convenient basis of operators for the

chiral ring (listed with the respective (h, q; h̄, q̄) eigenvalues) is

II (0, 0; 0, 0) ψ+ψ̄−
(

1

2
, 1;

1

2
,−1

)

Σ± 1
4

(

1

8
,
1

4
;
1

8
,−1

4

)

Σ± 2
4
,Σ0

(

1

4
,
1

2
;
1

4
,−1

2

)

Σ± 3
4

(

3

8
,
3

4
;
3

8
,−3

4

)

,
(2.6)

where we have introduced linear combinations of twist fields2 with definite charge with

respect to the U(1) current (2.2):

Σ+ k
4
≡ eikB/4

√
2

(

σ
(k
4
)

0 − i σ
(k
4
)

1

)

Σ− k
4
≡ eikB/4

√
2

(

−iσ
(k
4
)

0 + σ
(k
4
)

1

)

k = 1, 3

Σ± 2
4
≡ eiB/2

√
2

(

± i√
2

σ
( 2
4
)

0 ∓ i√
2

σ
( 2
4
)

1 + σ
( 2
4
)

01

)

Σ0 ≡ eiB/2

√
2

(

σ
( 2
4
)

0 + σ
( 2
4
)

1

)

. (2.7)

All these chiral primaries are associated with Kähler deformations of the model: the pri-

mary field ψ+ψ̄− is a marginal operator associated with the rescaling of the radius of the

torus; all the other primaries are relevant operators, which from the spacetime point of

view would be tachyons localized at the orbifold fixed points.

These operators are in one-to-one correspondence with the chiral primaries of the

A2⊗A2 theory. In general, for an Ak minimal model, the primary fields are constructed from

the order parameters of the parafermionic system used in the free field representation of the

2The linear combinations taken here differ from [3] by a factor of
√

2 in the expression for Σ0 (a possible

misprint in the reference).
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model. In the simple case we are considering the parafermions are just free fermions and

there is only one order parameter, the spin variable σ of the Ising model, with h = h̄ = 1
16 .

The chiral ring is generated by the identity and the operator Y ≡ σe
i φ

2
√

2 , which has

h = h̄ = 1
8 and q = q̄ = 1

4 . One can check that Y 2 = e
i φ√

2 and Y 3 = 0 , so the ring has the

structure of C[Y ]
Y 3 . After tensoring two copies of the model we obtain the following list of

chiral primaries:

II (0, 0 : 0, 0) Y 2
1 Y 2

2

(

1

2
, 1;

1

2
, 1

)

Y1, Y2

(

1

8
,
1

4
;
1

8
,
1

4

)

Y 2
1 , Y 2

2 , Y1Y2

(

1

4
,
1

2
;
1

4
,
1

2

)

Y2 Y 2
1 , Y1 Y 2

2

(

3

8
,
3

4
;
3

8
,
3

4

)

.
(2.8)

This reproduces the list given above in (2.6) for T 2/Z4 , up to the sign of the right-moving

U(1) charge, so we have a map between the (a, c) ting of the orbifold CFT and the (c, c)

ring on the minimal model side.

The A2⊗A2 model has a description as a Landau-Ginzburg model with superpotential

WLG = Y 4
1 + Y 4

2 and the fields Yi in (2.8) can be identified with the lowest components

of the LG superfields. The chiral ring of the LG model is C[Y1,Y2]
∂1W∂2W , which is the same

structure we see in (2.8). As usual, mirror symmetry maps Kähler deformation on the

A-side to polynomial deformations of the LG superpotential on the B-side. Turning on the

marginal deformation WLG = Y 4
1 + Y 4

2 + 2αY 2
1 Y 2

2 , which corresponds to deforming the

T 2/Z4 orbifold away from the selfdual radius point, the relations that define the chiral ring

of the LG model become

Y 3
1 + αY1Y

2
2 = 0 and Y 3

2 + αY2Y
2
1 = 0 . (2.9)

This means that away from the self-dual radius point the mirror model cannot be written

as the tensor product of two separate rational CFT’s.

It is interesting to compare the symmetries of the two models. The LG model is

invariant under exchange of the variables Y1 and Y2 and (for α = 0) under an independent

Z4 rotation of the two variables. These symmetries are also present in the mirror model.

The Y1 ↔ Y2 symmetry is reflected in the CFT as invariance under exchange of the two

fixed points associated with the twist fields σ
(k
4
)

0 and σ
(k
4
)

1 . This is part of the quantum

symmetry, together with a diagonal Z4 symmetry acting on the twist fields with weight

equal to the order of the twist field:

Σ
(k
4
)

i → e+2πik/4 Σ
(k
4
)

i i = 1, 2 . (2.10)

Due to the enhanced symmetry generated by the current (2.2), the Z4 transformation

Σ
(k
4
)

0 → e+2πik/4 Σ
(k
4
)

0

Σ
(k
4
)

1 → e−2πik/4 Σ
(k
4
)

1 (2.11)

is also a symmetry. This accounts for the additional Z4 symmetry that we observe in the

LG model, which at the conformal point is a subgroup of the symmetry generated by the

– 6 –
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U(1) current J− of A2 ⊗ A2 . As in (2.7), the T 2/Z4 fields that map to theA2 ⊗ A2 (or

Landau-Ginzburg) variables are those that have a definite U(1) charge.

We conclude this section with a brief comment on the GSO projection. As explained

in [21], the B-branes that we will consider in the next section in the context of the Landau-

Ginzburg model are consistent with the type 0A GSO projection in the A2 ⊗ A2 CFT.

Throughout the paper we will always work with two spacetime dimensions (from the T 2/Z4

point of view) and the boundary state that we will write in section 5 will be consistent

with the type 0 projection. One can of course embed the model in a ten-dimensional string

theory, but as it stands the orbifold we are considering will give rise to a nonsupersymmetric

spacetime theory.

3. B-branes in the Landau-Ginzburg model

In this section we look at the brane content of the model introduced in the previous section.

Specifically, we are interested in constructing A-branes on T 2/Z4 , which are expected to

be in one-to-one correspondence with the B-branes in the mirror CFT. The problem of

constructing and classifying these branes can be approached from at least three different

angles: we can study directly the A-type boundary conditions on the T 2/Z4 orbifold, or

we can consider the mirror theory A2 ⊗ A2 and describe the branes in this non-geometric

background. Furthermore, the B-branes in minimal models can be described in terms of

boundary states or, in the Landau-Ginzburg framework, in terms of matrix factorizations

of the LG superpotential WLG . In this section we start from this last point of view and

later we will make contact with the other approaches. In particular, we will see in the next

sections how to give a geometric interpretation (on T 2/Z4) to the LG branes constructed

below.

3.1 A brief review of matrix factorizations

The topological B-branes of a Landau-Ginzburg model are classified by the matrix factor-

izations of WLG [6 – 8]. A brane is completely characterized by a matrix

D =

[

0 F

G 0

]

such that D2 =

[

F · G 0

0 G · F

]

=

[

WLG · IIk 0

0 WLG · IIk

]

, (3.1)

where F and G are rank k matrices with polynomial entries. This is a very abstract

description, but it can be related to more usual constructions by interpreting the elements

of the matrices F and G as boundary potentials in the LG model defined on a strip. Then

one can show that the condition that F and G are a factorization of WLG is equivalent to

requiring invariance of the action under B-type supersymmetry [6 – 8].

In this framework, the problem of finding the boundary chiral ring associated with

any pair of B-type boundary conditions is translated into an algebraic problem, which

only involves the explicit knowledge of the factorizations of WLG associated with the two

boundaries. The boundary observables in the chiral ring are a subset of the open string

states of the physical theory and carry some relavant information, such as the number of

moduli (to first order) of a given brane. Given the matrix D , one can also easily compute

– 7 –
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bulk and boundary correlators involving B-model topological observables, which compute

certain protected quantities in the physical theory. For instance, the charges of the B-branes

under the Ramond-Ramond ground states is computed in the topological LG framework

by the residue formula [8]

〈O〉disk =
16

2(2πi)2

∮ O · STr[∂1D ∧ ∂2D]

∂1W∂2W
, (3.2)

with O any of the B-model observables described in the previous section. Here we have

written the formula for the case in which W is a polynomial in two variables Y1 and Y2 ,

which is what we will use, and the overall normalization has been fixed for convenience.

Finally, it is important to mention that not all factorizations of the form (3.1) cor-

respond to different, or independent, branes. Two factorizations are equivalent if the

corresponding matrices D and D′ can be related by an invertible linear transformation.

Two factorizations are also equivalent if they are related by the exchange of F and G : in

this case they are interpreted as a brane - anti-brane pair. (The ”anti-brane” here is a

factorization that has boundary Witten index and charges, computed as in (3.2), equal to

those of the original brane but of opposite sign). Moreover, it is possible to introduce in

the LG formalism the notion of bound state, i.e. it is possible to give a prescription to

construct, from two factorizations, a third one that describes the bound state of the two

original branes. The goal is thus to identify a minimal set of branes such that all other

branes can be obtained from these as bound states (or anti-branes of bound states).

This was just a very brief summary of the main features of the formalism that we will

use. More details can be found, for example, in [7, 8].

3.2 B-branes of WLG = Y 4
1 + Y 4

2

We now apply to WLG = Y 4
1 + Y 4

2 the construction just outlined. The superpotential is of

the form WLG = W1(Y1) + W2(Y2) , which reflects the fact that the corresponding CFT is

a tensor product of two minimal models. Note that since this is not a rational CFT, a full

classification of boundary conditions is much harder to obtain than for a single minimal

model. In this section we are not working in the boundary state formalism, but it is useful

to keep track of how the various results translate between the two formalisms.

The simplest boundary states that can be constructed in A2 ⊗A2 are tensor products

of boundary states of the two A2 minimal models (this gives the so-called “rational” bound-

ary state). Such a construction also exists in the LG formalism: there is a prescription

for writing a factorization of WLG starting from two factorizations of the one variable su-

perpotentials W1 and W2 [11]. We will call the branes obtained through this construction

“tensor product branes”. In fact, all the branes in this class can be obtained as bound

states of a single matrix factorization. This follows from the fact that for superpotentials

of the form WLG = Y n all B-branes can be generated from the linear factorization F = Y ,

G = Y n−1 [31, 13]. Therefore, since we are trying to identify a set of minimal branes, we

only need to consider the tensor product of two such linear factorizations of W1 and W2 .
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F
(1)
k

≡ (Y1 − ηkY2) :

ηk q0 ≡ i
2 〈Y 2

1 − Y 2
2 − i

√
2Y1Y2〉 q1 ≡ i

2 〈−Y 2
1 + Y 2

2 − i
√

2Y1Y2〉 q01 ≡ 1√
2
〈Y 2

1 + Y 2
2 〉

eiπ/4 0 −i
√

2 −i

e−iπ/4 i
√

2 0 i

ei3π/4 0 i
√

2 −i

e−i3π/4 −i
√

2 0 i

F
(2)
k

≡ (Y1 − eiπ/4Y2)(Y1 − ηkY2) :

ηk q0 ≡ i
2 〈Y 2

1 − Y 2
2 − i

√
2Y1Y2〉 q1 ≡ i

2 〈−Y 2
1 + Y 2

2 − i
√

2Y1Y2〉 q01 ≡ 1√
2
〈Y 2

1 + Y 2
2 〉

e−iπ/4 i
√

2 −i
√

2 0

e3iπ/4 0 0 − 2i

e−3iπ/4 −i
√

2 −i
√

2 0

Table 1: Charges of the B-branes associated with the polynomial factorizations of WLG . The

notation is qi ≡ 〈eiB/2σ
( 2

4
)

i 〉 and the expressions in terms of the LG observables are obtained

inverting (2.7). The results in this table can be interpreted geometrically as indicating which fixed

points each branes passes through (see figure 2).

The corresponding factorization has rank two and is of the form

F =

[

Y1 Y2

Y 3
2 −Y 3

1

]

G =

[

Y 3
1 Y2

Y 3
2 −Y1

]

. (3.3)

In the minimal model language this corresponds to the |L = 0〉 ≡ |L1 = 0〉 ⊗ |L2 = 0〉
boundary state (see the appendix of [7] for the notation).

Let us now discuss some properties of these branes, which can be derived in the frame-

work of matrix factorizations. Using the residue formula (3.2) one can check that all the

topological disc correlators without boundary insertions vanish. This means that the cor-

responding physical branes are not charged under the Ramond ground states and this is in

fact confirmed from the boundary state analysis [7, 9]. From the point of view of the mir-

ror model T 2/Z4 , we learn in particular that the D1-branes that are mirror to the tensor

product factorizations are not charged under Ramond twisted sector fields. We can also

look at the spectrum of boundary operators, which can be computed as the cohomology

of a BRST operator constructed from D . Leaving out the details of this computation, the

result is that for the factorization (3.3) the boundary Witten index vanishes. Moreover, one

finds that the boundary chiral rings contains two fermionic modes, which are associated to

moduli of the brane. Through mirror symmetry, each of them should be identified with the

position and Wilson line of a D1-brane, so we can conjecture that the factorization (3.3)

describes in fact a superposition of two branes, which are free to move independently.

The tensor product branes only account for a small subset of all the B-branes in the

theory, but they are interesting because the tensor product construction makes it easy to
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derive their properties (see [11] for more details about the LG computations). Another

interesting and easily tractable class of factorizations is given by polynomial (rank one)

factorizations of the form

WLG =
∏

k

(Y1 − ηkY2) , (3.4)

where ηk ≡ eikπ/4 , k ∈ {±1 ,±3} , is a fourth root of −1 . The properties of these branes

were first discussed in [11] and the conformal field theory description, as permutation

boundary states [28], was established in [21] (see also [22]). We will come back to the

boundary state decription in section 5. Since exchanging F and G only amounts to ex-

changing a brane with its anti-brane, from factorizations of this form we seem to obtain

a total of seven independent B-branes. We introduce the notation F
(1)
k ≡ (Y1 − ηkY2) for

the linear factorizations and F
(2)
k ≡ (Y1 − eiπ/4Y2)(Y1 − ηkY2) , with ηk 6= eiπ/4 , for the

quadratic factorizations. In fact it was shown in [21] that the branes F
(2)
k can be obtained

as bound states of the linear factorizations F
(1)
k . Moreover, the same reference shows that

the annihilation of a brane F
(1)
k and its antibrane can produce a tensor product brane, if

the tachyon that drives the annihilation has a specific notrivial profile 3. It is not clear

if there are more general branes that are not obtained from the linear polynomial factor-

izations, but it is possible that they constitute a complete set of minimal branes for this

model. Some hints in this direction also come from the geometric interpretation of these

branes, as we will see in the next sections. In any case, due to practical limitations, we

will restrict attention to this class of branes.

Unlike the tensor product branes, the branes described by the polynomial factoriza-

tions (3.4) couple to some bulk observables. However, only the quadratic bulk operators

Y 2
1 , Y1Y2, Y

2
2 have a non-vanishing disc one-point function. From the previous section we

know that these operators correspond to Z2 twist fields on T 2/Z4 , so we learn that these

branes carry some twisted sector Ramond charges, but they do not couple to the Ramond

fields in the untwisted sector. The values of the non-zero one-pointfunctions are collected

in table 1.

It will also be useful to have some information about the spectrum of boundary op-

erators. We skip the computation and just summarize the results. There are three even

boundary preserving operators associated with each of the linear factorizations F
(1)
k and

four associated with each of the quadratic factorizations F
(2)
k . There are no odd boundary

preserving operators, which means that these branes have no moduli. However, there is

a single odd boundary changing operators for every pair of branes F
(1)
k and F

(1)
j , k 6= j .

3We should point out that all these statements are made in the context of the topological theory, so

while they reflect correctly a relation between the branes of the physical theory, they are not statements

about the dynamics. In order to know if a decay actually happens in the physical theory, more information

is needed.
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This information is summarized in the intersection matrices

I(F
(1)
k , F

(1)
j ) =











3 −1 −1 −1

−1 3 −1 −1

−1 −1 3 −1

−1 −1 −1 3











I(F
(2)
k , F

(2)
i ) =







4 0 0

0 4 0

0 0 4






. (3.5)

In addition, for ηk = eiπ/4 or ηk = ηj , the spectrum of physical open string states contains

two even boundary operators that change F
(1)
k into F

(2)
j . For all the other values of

ηk and ηj one finds instead two odd operators. A symmetric result holds for the open

strings stretched in the opposite direction, from F
(2)
j to F

(1)
k . The intersection matrices

are

I(F
(1)
k , F

(2)
j ) =







2 2 −2 −2

2 −2 2 −2

2 −2 −2 2






I(F

(2)
j , F

(1)
k ) =











2 2 2

2 −2 −2

−2 2 −2

−2 −2 2











. (3.6)

One can verify that these intersection matrices are invariant under the full symmetry group

of the LG model.

4. A-branes in the orbifold

In this section we take a different point of view and look at D-branes on T 2/Z4 that preserve

A-type supersymmetry. Ideally we would like to construct boundary states that reproduce

the properties - in particular the couplings to the bulk fields - of the LG branes described in

the previous section. We are especially interested in finding a geometric description of the

LG branes associated with the polynomial factorizations (3.4). We found in the previous

section that these branes are charged under some twisted sector fields, so we need to look

in the orbifold CFT for a set of A-branes with this property. Geometrically, A-branes wrap

middle-dimensional cycles, so we consider D1 branes that wrap one direction inside T 2 ,

summing over images to implement the orbifold projection. For a generic cycle we would

have to sum over four images, but we can find some special cases, as in figure 2, in which

it is sufficient to sum over two images4. The resulting brane should be rigid, because any

displacement would lead to a configuration that doesn’t respect the orbifold projection.

This is consistent with the fact that the cycles in figure 2 are precisely all those that pass

through any two of the orbifold fixed points, so branes wrapping these cycles can carry

charge under twisted sector fields.

These observations suggest that the mirror of the B-branes corresponding to polyno-

mial factorizations in the LG model could be, roughly, A-branes wrapping the cycles of

figure 2. In the remaining part of the section we will try to give some arguments in favor

4In fact, if we keep into account the orientation of the branes, we still need to sum over four images,

as will appear from the coefficient that measure the tension in the boundary states that we will derive in

section 5. However, for the purposes of this section it is useful to forget about the orientation, since it does

not affect the computation of twisted sector couplings that we are interested in.
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Figure 2: A-branes on T 2/Z4 . This is a very schematic picture of the branes corresponding to

the LG factorizations F
(1)
k , deduced from the values of the one-point function collected in table 1.

The dots denote the orbifold fixed points, as in figure 1.

of this conjectured identification. We will work in the boundary state framework, but we

will not give a full boundary state description of the branes in figure 2. Rather, we will

derive from spacetime considerations the topological couplings of these branes and show

that they match the results of the previous section (we follow closely the general discussion

of reference [33]). A more complete boundary state description of these branes will be given

in the next section, exploiting the exact knowledge of the corresponding minimal model

boundary states [21, 22].

Written in the closed string channel, the A-type boundary conditions are:

(T − T̄ )|B〉 = 0 (G+ + iη Ḡ−)|B〉 = 0

(J − J̄)|B〉 = 0 (G− + iη Ḡ+)|B〉 = 0 .
(4.1)

We set η = +1 for consistency with the boundary condition [Q++Q̄+]∂Σ = 0 imposed in the

LG model. If we are only interested in the topological couplings we can, following [33, 27],

consider a linear combination of states that solve the conditions (4.1) in the NS sector:

|B〉 =
∑

a

ca ||a〉〉 , (4.2)

where we only include the Ishibashi states corresponding to the allowed chiral primary

fields. Here, for A-branes, the label a runs over the elements of the (a, c) ring. The idea is

that |B〉 will be related by spectral flow to the terms in the physical boundary state that

encode the value of the topological couplings.

The relation between the coefficients ca in (4.2) and the disc one point functions of the

A-model observables is found expanding (4.2), neglecting all the terms involving descen-
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dants, and applying half a unit of spectral flow to implement the topological twist:

|B〉 =
∑

a

ca |Oa〉 + · · · A-twist−−−−→
∑

a

ca Oa |0〉top . (4.3)

In the first equality we have pulled out of the boundary state the terms containing the

chiral primaries, generically denoted Oa , and in the final expression |0〉top is the topological

vacuum, which coincides with a Ramond vacuum state of the untwisted theory. Therefore

ca = ηab〈0top|Ob|B〉 , (4.4)

where Ob here stands for any A-model observable and ηab denotes the inverse of the topo-

logical metric ηab ≡ 〈OaOb〉 [33].

In order to use the formula (4.4) we will need to determine the metric ηab . It is easier

to compute the two-point function on the B-side, in the LG model. Here the correlators of

the bulk observables (in the theory without boundaries) are given by

〈O〉sphere =
16

(2πi)2

∮ O
∂1W∂2W

, (4.5)

where again the unimportant overall factor has been fixed for convenience. Applying

this formula we find that the metric ηab only mixes the quadratic LG operators among

themselves and on these subset of operators it looks like

ηab =







0 0 1

0 1 0

1 0 0






, a, b = Y 2

1 , Y1Y2, Y 2
2 . (4.6)

From the CFT point of view, this is simply the statement that the k-th twisted sector

only couples to the (4 − k)-th twisted sector, with an additional constraint on the charges

imposed by the enhanced U(1) symmetry.

4.1 Topological couplings

Since the branes that we are trying to describe are only charged under Ramond fields in

the second twisted sector (these are the observables Y 2
1 , Y1Y2, Y

2
2 in LG language), for the

purpose of deriving the topological couplings we can think of the boundary state (4.2) as

being constructed in two steps. We can first write down some boundary states invariant

under the Z2 subgroup of the orbifold group and then, as a second step, superpose two such

states to impose the full Z4 invariance. For concreteness let us focus on a brane wrapping

the cycle (a) in figure 2. We start by writing the boundary state for a brane entended in

the 1̂ direction inside T 2 , imposing for the moment only a Z2 projection. The conditions

(∂x1 + ∂̄x1)|B〉 = 0 (ψ1 + iψ̄1)|B〉 = 0

(∂x2 − ∂̄x2)|B〉 = 0 (ψ2 − iψ̄2)|B〉 = 0 (4.7)

are solved in a Z2 twisted sector by the coherent state

||σ(k
2
)〉〉1̂ = exp

[

∑

r>0

1

r
(−α1

−rᾱ
1
−r + α2

−rᾱ
2
−r) + i

∑

r>0

(−ψ1
−rψ̄

1
−r + ψ2

−rψ̄
2
−r)

]

|σ(k
2
)〉NS , (4.8)
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where r ∈ Z and |σ(k
2
)〉NS denotes the NS vacuum in the sector twisted by eikB/2σ(k

2
) , with

the constraint (ψ1
0 + iψ̄1

0)|σ(k
2
)〉NS = (ψ2

0 − iψ̄2
0)|σ(k

2
)〉NS = 0 from the zero modes boundary

conditions. For the configuration we are considering, taking into account (4.4) and (4.6),

the relevant twisted sectors are those created by eiB/2σ
( 1
2
)

11 and eiB/2σ
( 1
2
)

01 . We thus write

as an ansatz the linear combination of coherent states

N
[

eiθa ||σ( 1
2
)

11 〉〉1̂ + ||σ( 1
2
)

01 〉〉1̂
]

, (4.9)

with some normalization constant N .

A complete analysis of boundary states for D1 branes extended in S1/Z2 orbifolds

was carried out in [32]. In this section we do not aim to write the full boundary states

for the branes on T 2/Z4 , but we can borrow an argument given in [32] to associate a

physical meaning to the phase that appears in (4.9). This in turn will allow us to give

an interpretation to the topological one-point functions computed in the previous section.

The argument can be summarized as follows. The two fixed points of the S1/Z2 orbifold

correspond to the two conjugacy classes of the group Λ n Z2 where Λ denotes the group of

translations by 2πR . If we consider the transformations

g0 : x → −x

g1 : x → 2πR − x ,
(4.10)

such that

g1g0 : x → x + 2πR , (4.11)

then we can think of σ
( 1
2
)

01 and σ
( 1
2
)

11 as being associated with the sectors twisted by g0 and g1

respectively. In overlap computations, the terms coming from the overlap of the Ishibashi

states ||σ( 1
2
)

01 〉〉 are interpreted in the open string channel as terms coming from a trace with

a g0 insertion. Similarly, the overlap of ||σ( 1
2
)

11 〉〉 is associated with a term in the open string

trace with a g1 insertion. If we take a string stretched between two branes with Wilson

lines θ and θ′ , the wave function of the open string states picks up a phase ei(θ−θ′) under

a translation by 2πR . Under the action of Z2 the winding quantum number w picks up a

sign, so invariance of the unwtisted sector coherent state

∑

w

eiθw||w〉〉 (4.12)

restricts the choice of Wilson line to the values θ = 0, π . Therefore, from what we have

said so far, for a string stretched between two branes with the same θ the action of g0 and

g1 should be identical, and so the terms containing ||σ( 1
2
)

01 〉〉 and ||σ( 1
2
)

11 〉〉 should contribute

equally to the overlap. Instead, if the value of θ is different for the two branes, then the

contributions of the overlaps should differ by a sign, to account for the phase ei(θ−θ′) . In

conclusion, as the notation suggests, in (4.9) the parameter θa should be interpreted as the

Wilson line on the brane, with θa = 0, π .

To impose the full Z4 projection we need to add the image of the brane under the

transformation x1 → x2, x2 → −x1 . For the image the discussion goes as before, so we can
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consider a linear combination of states

N
[

eiθa ||σ( 1
2
)

11 〉〉2̂ + ||σ( 1
2
)

10 〉〉2̂
]

. (4.13)

Note that the value of the Wilson line is again θa to respect the Z4 symmetry. Superposing

(4.9) and (4.13), we conclude that the boundary state that describes a brane wrapping the

cycle (a) in figure 2 must contain the Ramond sector terms related by spectral flow to

N
[

eiθa ||σ( 1
2
)

11 〉〉1̂ + eiθa ||σ( 1
2
)

11 〉〉2̂ + ||σ( 1
2
)

01 〉〉1̂ + ||σ( 1
2
)

10 〉〉2̂
]

=
√

2N
[√

2eiθa |σ( 2
4
)

11 〉 + |σ( 2
4
)

01 〉
]

+ · · · ,

(4.14)

where σ
( 2
4
)

01 ≡ (σ
( 1
2
)

10 + σ
( 1
2
)

01 )/
√

2 is the Z4 invariant combination of twist fields and we have

expanded the coherent states as in (4.3). What we have gained by the analysis of the

previous paragraph is that we could relate the coefficients in (4.14) to the value of the

Wilson lines on the branes.

Using (4.4), we can extract from the expression (4.14) the ratio of couplings

q0

q01
=

√
2 e+iθa

and comparison with table 1 shows that this is the correct answer for the LG branes

described by linear factorizations with η = e−iπ/4, e−i3π/4 for the different choices of Wilson

line θa . This is consistent with the identification

F
(1)
−1 ≡ (Y1 − e−iπ/4 Y2) ←→ |a, 0 〉 ≡ +

√
2 ||σ( 2

4
)

11 〉〉 + ||σ( 2
4
)

01 〉〉 (4.15a)

F
(1)
−3 ≡ (Y1 − e−i3π/4 Y2) ←→ |a, π〉 ≡ −

√
2 ||σ( 2

4
)

11 〉〉 + ||σ( 2
4
)

01 〉〉 , (4.15b)

where now ||σ( 2
4
)

11 〉〉 and ||σ( 2
4
)

01 〉〉 are Ishibashi states of the Z4 orbifold. For simplicity here we

have dropped the normalization factor.

Along the same lines, the configuration (b) in figure 2 can be associated with the linear

combination of coherent states

√
2N

[√
2 eiθb ||σ( 2

4
)

00 〉〉 − ||σ( 2
4
)

01 〉〉
]

, (4.16)

which is consistent with the map

F
(1)
+1 ←→ |b, π〉 ≡ +

√
2 ||σ( 2

4
)

00 〉〉 − ||σ( 2
4
)

01 〉〉 (4.17a)

F
(1)
+3 ←→ |b, 0 〉 ≡ −

√
2 ||σ( 2

4
)

00 〉〉 − ||σ( 2
4
)

01 〉〉 . (4.17b)

The sign in front of ||σ( 2
4
)

01 〉〉 is required, by an argument similar (T-dual) to the one given

above, because a phase ei(x−x′)/R appears in the wave functions associated with open strings

that stretch between the branes in (a) and (b).

The configurations (c) and (d) in figure 2 are related to the quadratic factorizations

of the LG superpotential WLG . The notation is F
(2)
k ≡ (Y1 − eiπ/4Y2)(Y1 − ηkY2) . For the

configuration (c) we can write

|c, θc〉 ≡ 2N
[

||σ( 2
4
)

00 〉〉 − eiθc ||σ( 2
4
)

11 〉〉
]

, (4.18)
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which corresponds to the factorizations F
(2)
−1 and F

(2)
−3 for the two different choices of Wilson

lines θc = 0 and θc = π :

F
(2)
−1 ←→ |c, 0 〉 ≡ +

√
2 ||σ( 2

4
)

00 〉〉 −
√

2 ||σ( 2
4
)

11 〉〉 (4.19a)

F
(2)
−3 ←→ |c, π〉 ≡ +

√
2 ||σ( 2

4
)

00 〉〉 +
√

2 ||σ( 2
4
)

11 〉〉 . (4.19b)

The remaining factorization F
(2)
−1 will thus correspond to configuration (d). In this case we

don’t have a Wilson line degree of freedom, since the Z4 symmetry requires the contribution

from the two Z2 fixed points to be the same. Repeating the steps illustrated before, we

can associate to one “component” of the brane the linear combination of Ishibashi states

N
[

||σ( 1
2
)

10 〉〉1̂+2̂ + ||σ( 1
2
)

01 〉〉1̂+2̂

]

=
√

2N ||σ( 2
4
)

01 〉〉1̂+2̂ .

and the same for the image. As a result we find

F
(2)
+3 ←→ |d〉 ≡ 2

√
2N ||σ( 2

4
)

01 〉〉 . (4.20)

Note that the normalization is consistent with the relative factor of 2 that we observe in

table 1 between the charge of this brane and the q01 charge of the other branes.

4.2 Intersection matrix

As a further check, we now compare the intersection matrix of the LG branes computed in

section 3 with the index I(J,K) ≡ TrJ,K(−1)F e−βH of the boundary CFT. In the closed

string channel this is expressed as an overlap I(J,K) = R〈J |(−1)qL |K〉R , where qL is the

left U(1) R-chrage and the subscript R indicates that we only take the Ramond terms

(ground states) in the boundary state, properly normalized. Note that the ground states

that contribute in our case will have qL = 0 (see table 7 in the appendix).

We begin by trying to reproduce the intersection matrix I(F
(1)
k , F

(1)
j ) , which we found

earlier to have the form (3.5). We find the matrix elements

〈a, θ′a|a, θa〉 = 2 ei(θa−θ′a)〈〈σ( 2
4
)

1 ||σ( 2
4
)

1 〉〉 + 〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = + 3 if θa = θ′a

− 1 if θa 6= θ′a

〈b, θ′b|b, θb〉 = 2 ei(θb−θ′b)〈〈σ( 2
4
)

0 ||σ( 2
4
)

0 〉〉 + 〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = + 3 if θb = θ′b (4.21)

− 1 if θb 6= θ′b

〈a, θa|b, θb〉 = 〈b, θb|a, θa〉 = −〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = − 1 .

One can check that these results agree with (3.5) precisely if the identifications (4.15) and

(4.17) hold. Similarly, we find for I(F
(2)
k , F

(2)
j ) the matrix elements

〈c, θ′c|c, θc〉 = 2 ei(θc−θ′c)〈〈σ( 2
4
)

1 ||σ( 2
4
)

1 〉〉 + 2 〈〈σ( 2
4
)

0 ||σ( 2
4
)

0 〉〉 = +4 if θc = θ′c

0 if θc 6= θ′c

〈d|d〉 = +4〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = +4 (4.22)
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〈c, θc|d〉 = 〈d|c, θc〉 = 0 .

Using the identifications (4.19) and (4.20) these are seen to agree with the answer (3.5)

found from the LG computation. For completeness, we also write the result of the compu-

tation of I(F
(2)
k , F

(1)
j ) = I(F

(1)
j , F

(2)
k ) :

〈c, θc|a, θa〉 = −2 ei(θa−θc)〈〈σ( 2
4
)

1 ||σ( 2
4
)

1 〉〉 = −2 if θc = θa

+2 if θc 6= θa

〈c, θc|b, θb〉 = −2 eiθb〈〈σ( 2
4
)

0 ||σ( 2
4
)

0 〉〉 = +2 if θb = π (4.23)

−2 if θb = 0

〈d|a, θa〉 = −2 〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = −2

〈d|b, θb〉 = +2 〈〈σ( 2
4
)

01 ||σ( 2
4
)

01 〉〉 = +2 ,

which is in agreement with (3.6). Note that here the intersection matrix appears to be

symmetric by construction, whereas in the LG formalism this property is not manifest.

5. Comparison with boundary states in A2 ⊗ A2

So far we have looked at the properties of branes in the topological sector of T 2/Z4 and the

mirror LG model WLG = Y 4
1 + Y 4

2 , showing that they agree. In the topological sector this

LG model is completely equivalent to the A2⊗A2 CFT and we have mentioned earlier that

the map between the LG B-branes and the boundary states in the CFT is known explicitly.

More precisely, the statement is that one can construct some consistent boundary states,

with B-type boundary conditions, that reproduce all the properties of the topological B-

branes [9, 7, 21, 22]. However, the boundary states contain more information, since they

are constructed in the physical theory. In this section we use the explicit knowledge of

boundary states in the minimal models (and how they relate to the LG factorizations) to

write down the boundary states for the A-branes on T 2/Z4 . The goal is to complete and

put on firmer ground the geometric picture of section 4.

5.1 Permutation boundary states

It was shown in [21] that the LG branes obtained from polynomial factorizations of the

form (3.4) are described in CFT language by permutation boundary states [28]. In the case

of the tensor product of two minimal models, these satisfy the B-type boundary conditions

(T1 − T̄2)|B〉 = 0 (T2 − T̄1)|B〉 = 0

(G±
1 + iη Ḡ±

2 )|B〉 = 0 (G±
2 + iη Ḡ±

1 )|B〉 = 0 (5.1)

(J1 + J̄2)|B〉 = 0 (J2 + J̄1)|B〉 = 0 ,

which mix the currents of the two minimal models. Again, we take η = +1 for consistency

with the combination of supercharges preserved by the LG branes. Through the map

discussed in section 2, these boundary conditions can be rewritten in terms of T 2/Z4
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currents. One finds simply

(T − T̄ )|B〉 = 0 (G± + iη Ḡ±)|B〉 = 0 (5.2)

(Q − Q̄)|B〉 = 0 (J + J̄)|B〉 = 0 ,

where Q is the U(1) R-current and J is the other U(1) current, associated with the enhanced

symmetry at the self-dual radius. These are, as expected, A-type boundary conditions. The

choice of gluing with a nontrivial permutation in (5.1) is reflected here in the boundary

condition imposed on J . As is familiar from the case of an unorbifolded compactification

on a circle at the self-dual radius, where the geometry is effectively an S3 , here we can think

of the geometry as containing an extra circle, associated with the current J ≡ i∂H . The

permutation and tensor product branes are distinguished by having, respectively, Dirichlet

and Neumann boundary conditions in this direction.

The permutation boundary states [28, 21, 22] are of the form

|[L,M,S1, S2]〉 =
∑

l,m,s1,s2

CL,M,S1,S2

l,m,s1,s2
||[l,m, s1] ⊗ [l,−m,−s2]〉〉σ , (5.3)

where the superscript σ distinguishes the Ishibashi states that solve the gluing conditions

above and the coefficients are

CL,M,S1,S2

l,m,s1,s2
=

1

2
√

2
eiπMm/4e−iπ(S1s1−S2s2)/2 sin[π4 (L + 1)(l + 1)]

sin[π4 (l + 1)]
. (5.4)

The quantum numbers (l,m, s) that label the Ishibashi states take the values l = 0, 1, 2 ,

m = −4, . . . ,+3 (mod 8), si = 0,±1, 2 (mod 4), with the conditions that l + m + s1

and s1 − s2 must be even. Note that in (5.3) it has been assumed that l1 = l2 ≡ l and

m1 = −m2 ≡ m, because this is necessary for the boundary conditions (5.1) to make sense.

The square brackets in (5.3) express the fact that the quantum numbers are defined up to

the equivalence relations

(l,m, s1) ∼ (2 − l,m + 4, s1 + 2)

(l,m,−s2) ∼ (2 − l,m + 4,−s2 + 2) . (5.5)

These relations can be used to restrict the sum in (5.3) to s1 = 0, 1 , while s2 is still

summed over all values s2 = 0,±1, 2 because l2,m2 are not independent labels in the

construction of permutation Ishibashi states. The quantum numbers [L,M,S1, S2] that

label the boundary states take values in the same range as [l,m, s1, s2] , with an analogous

equivalence relation. We set S1 = S2 = 0 , because this choice corresponds to the boundary

conditions with η = +1 which have been implicitly used in the previous sections. With

this choice, L + M must be even.

5.1.1 Ramond charges

The value of the topological one-point functions computed in the LG formalism can be read

off from the coefficients in the terms of the boundary state that correspond to Ramond

ground states. These are the Ishibashi states in (5.3) with quantum numbers s1 = s2 = 1
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〈Y 2
1 〉 〈Y1Y2〉 〈Y 2

2 〉
F

(1)
+1 (M = −2) +1

2 − i
2 − i√

2
−1

2 − i
2

F
(1)
−1 (M = 0) +1

2 + i
2 + i√

2
−1

2 + i
2

F
(1)
+3 (M = −4) −1

2 − i
2 + i√

2
+1

2 − i
2

F
(1)
−3 (M = 2) −1

2 + i
2 − i√

2
+1

2 + i
2

Table 2: Charges of topological B-branes from permutation boundary states.

and m = l + 1 . For these, adjusting appropriately the normalization, from (5.4) we have

|[L,M, 0, 0]〉top =
1√
2

∑

l=0,1,2

ei π
4
M(l+1) sin

[

π
4 (L + 1)(l + 1)

]

sin
[

π
4 (l + 1)

] ||[l, l + 1,+1]⊗ [l,−l − 1,−1]〉〉σ.

(5.6)

In order to be able to compare with the results obtained previously from matrix fac-

torizations, we need to know what are the LG observables that correspond to the quantum

numbers that appear in these Ishibashi states and we need to know what is the map be-

tween LG factorizations and permutation boundary states. The latter was worked out

in [21], matching the intersection matrix obtained from the overlap of the boundary states

with the LG results. The linear factorizations F = Y1 − ηY2 are mapped to the boundary

states with L = 0 and η = e−iπ(M+1)/4 . Since L + M must be even, the label M has only

four independent values M = −4,−2, 0,+2 , so we find correctly that η equals a fourth

root of unity. In the notation of section 3, the map for the linear factorizations reads

F
(1)
k ←→ |[0,M = −(k + 1), 0, 0]〉 . (5.7)

The permutation boundary states with L = 1 are mapped to quadratic factorizations in

the LG model; note however that not all quadratic factorizations seem to be realized in

this way [21]. Finally, L = 2 corresponds to the anti-branes of the linear factorizations.

Next, let us consider the meaning of the label l in (5.6). As it was mentioned above,

the Ramond ground states are in one-to-one correspondence with the chiral primaries of

the model in the NS sector. For each of the two minimal models in A2 ⊗A2, these are the

primaries with quantum numbers (l,m = l + 1, s = 1) . The corresponding dimension and

U(1) charge are

hl =
l(l + 2) − l2

16
, ql =

l

4
, l = 0, 1, 2 ,

so that h = q
2 . We are considering (c, c) states, so this relation holds with the same sign

for both left- and right-movers. As we already discussed in section 2, the chiral primaries

that carry these quantum numbers are of the form
(

σe
i φ

2
√

2
)l ∼ Y l , where σ and φ are the

minimal model fields and Y is the field that appears in the Landau-Ginzburg model. The

quantum numbers that appear in (5.6) are schematically, writing explicitly both left- and

right-moving sectors,

(l, l + 1, 1)1 ⊗ (l,−l − 1,−1)2 ⊗ (l, l + 1, 1)1 ⊗ (l,−l − 1,−1)2
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and using the equivalence relation (5.5) we can rewrite

(l,−l − 1,−1)2 ∼ (2 − l,−l − 1 + 4, 1)2 .

Hence, in (5.6), the quantum number l labels a subset of the chiral primaries of A2 ⊗
A2 , which are identified in LG language with the quadratic observables Y 2

1 , Y1Y2, Y
2
2 .

Specifically, we can take (see table 3 and table 4 in appendix A)

l = 0 ↔ Y 2
2 , l = 1 ↔ Y1Y2 , l = 2 ↔ Y 2

1 . (5.8)

There is still room for some numerical factors, which are crucial in comparing the one-

point functions. It seems to be necessary for consistency with the LG results to postulate

a relation of the kind5

||[l, l + 1, 1]1 ⊗ [l,−l − 1,−1]2〉〉 = eiπ(l+1)/4||Y l
1Y 2−l

2 〉〉 .

Putting all this together, we are able to reproduce the topological one-point functions

computed in section 3 from the boundary states (5.3). Recalling the discussion around eq.

(4.3)-(4.6), we have

〈Y 2−l
1 Y l

2 〉L=0,M =
ei π

4
(M+1)(l+1)

√
2

. (5.9)

The results are shown in table 2 and are in agreement with the earlier results of section 3.

5.1.2 Complete T 2/Z4 boundary states

The main point of this section is that we can use the expression for the permutation

boundary states in (5.3) to write down the complete boundary states (as opposed to having

only the “topological terms”, as in the previous section) that describe the A-branes on

T 2/Z4 . This can be done because we have an explicit dictionary between the primary

fields in the two models, which is summarized in the appendix. In particular, table 6 tells

us how to associate to each Ishibashi state that appears in (5.3) a corresponding Ishibashi

state of the T 2/Z4 CFT.

In the NS sector we find that the Ishibashi states that appear in the boundary state

(5.3) are:

||[0, 0, 0] ⊗ [0, 0, 0]〉〉σ ↔ ||0, 0; 0, 0〉〉NS

||[1,−1, 0] ⊗ [1, 1, 0]〉〉σ ↔ e+iπ/4

√
2

[

||1, 0; 0, 0〉〉Z4
NS − i||0, 1; 0, 0〉〉Z4

NS

]

(5.10)

||[1, 1, 0] ⊗ [1,−1, 0]〉〉σ ↔ e−iπ/4

√
2

[

||1, 0; 0, 0〉〉Z4
NS + i||0, 1; 0, 0〉〉Z4

NS

]

||[2,−2, 0] ⊗ [2, 2, 0]〉〉σ ↔ 1

2

[

+i||1, 0; 1, 0〉〉Z4
NS −i||0, 1; 0, 1〉〉Z4

NS +||1, 0; 0, 1〉〉Z4
NS +||0, 1; 1, 0〉〉Z4

NS

]

||[2, 2, 0] ⊗ [2,−2, 0]〉〉σ ↔ 1

2

[

−i||1, 0; 1, 0〉〉Z4
NS +i||0, 1; 0, 1〉〉Z4

NS +||1, 0; 0, 1〉〉Z4
NS +||0, 1; 1, 0〉〉Z4

NS

]

5I am very thankful to Ilka Brunner for her help on this point.
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||[2, 0, 0] ⊗ [2, 0, 0]〉〉σ ↔ 1

2

[

||2, 0; 0, 0〉〉Z4
NS +||1, 1;−1, 1〉〉Z4

NS +||0, 2; 0, 0〉〉Z4
NS +||1, 1; 1,−1〉〉Z4

NS

]

.

We use the notation ||m1, w1;m2, w2〉〉 for the Ishibashi state corresponding to the primary

field Vm1,w1;m2;w2 (see definition in (A.2) in the appendix). The remaining NS Ishibashi

states that appear in (5.3) correspond to G+
1,2 descendants of these. (The T 2/Z4 Ishibashi

states are defined so that they already include the sum over s1, s2).

From experience with boundary states in (orbifolds of) flat space, we expect to see

the boundary state (in the unstwisted sector, in the case of an orbifold) written as an

infinite sum of coherent states labeled by winding and momentum quantum numbers, with

a weight dependent on position and Wilson line. The boundary states that will result from

the analysis of this section can be written in this form, but from the point of view of the

extended chiral algebra that includes the U(1) current J it is more natural to consider

a finite number of primary fields and hence Ishibashi states. The sum over winding and

momentum arises from the sum over JJ̄-descendants in the Ishibashi states.

In the R sector we see the couplings to the ground states obtained by spectral flow

from the (c, c) states ((a, c) from the point of view of T 2/Z4):

||[0, 1, 1] ⊗ [0,−1,−1]〉〉σ ↔ eiπ/4

2

[

− i||σ( 2
4
)

00 〉〉R + i||σ( 2
4
)

11 〉〉R +
√

2||σ( 2
4
)

01 〉〉R
]

||[1, 2, 1] ⊗ [1,−2,−1]〉〉σ ↔ eiπ/2

√
2

[

||σ( 2
4
)

00 〉〉R + ||σ( 2
4
)

11 〉〉R
]

(5.11)

||[2, 3, 1] ⊗ [2,−3,−1]〉〉σ ↔ ei3π/4

2

[

+ i||σ( 2
4
)

00 〉〉R − i||σ( 2
4
)

11 〉〉R +
√

2||σ( 2
4
)

01 〉〉R
]

.

In addition, there are some couplings to excited twisted sector fields (see (A.3) in the

appendix):

||[0,−3,−1] ⊗ [0, 3,−1]〉〉σ ↔ ei3π/4

2

[

+ i||τ ( 2
4
)

00 〉〉R − i||τ ( 2
4
)

11 〉〉R +
√

2||τ ( 2
4
)

01 〉〉R
]

||[1, 0, 1] ⊗ [1, 0, 1]〉〉σ ↔ e−iπ/2

√
2

[

||σ−( 2
4
)

00 〉〉R + ||σ−( 2
4
)

11 〉〉R
]

(5.12)

||[2,−1, 1] ⊗ [2, 1, 1]〉〉σ ↔ eiπ/4

2

[

− i||τ ( 2
4
)

00 〉〉R + i||τ ( 2
4
)

11 〉〉R +
√

2||τ ( 2
4
)

01 〉〉R
]

.

We can use this dictionary to translate the permutation boundary states (5.3) into

T 2/Z4 boundary states. As an example, let us consider the cycle (a) in figure 2. The

relations (4.15) and (5.7) tell us that a brane wrapping this cycle is described by the

permutation boundary state |[0,M, 0, 0]〉 , with M = 0, 2 for the two allowed values of the

Wilson line. The relations in eq. (5.11)-(5.12) allow us to rewrite this boundary states
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(5.3) as

|[0,{M = 0, 2}, 0, 0]〉 =

1

2
√

2

[

||0, 0; 0, 0〉〉NS + ||2, 0; 0, 0〉〉Z4
NS + ||1, 1;−1, 1〉〉Z4

NS + ||0, 2; 0, 0〉〉Z4
NS + ||1, 1; 1,−1〉〉Z4

NS

+ ||1, 0; 0, 0〉〉Z4
NS + (−1)

M
2 ||0, 1; 0, 0〉〉Z4

NS + (−1)
M
2 ||1, 0; 0, 1〉〉Z4

NS + (−1)
M
2 ||0, 1; 1, 0〉〉Z4

NS

+ i ||τ ( 2
4
)

01 〉〉R − i
(−1)

M
2√

2
||τ ( 2

4
)

0 〉〉R + i
(−1)

M
2√

2
||τ ( 2

4
)

1 〉〉R − i
(−1)

M
2√

2
||σ−( 2

4
)

0 〉〉R

− i
(−1)

M
2√

2
||σ−( 2

4
)

1 〉〉R + i ||σ( 2
4
)

01 〉〉R + i(−1)
M
2

√
2 ||σ( 2

4
)

0 〉〉R
]

(5.13)

where now on the right-hand sides we have linear combinations of T 2/Z4 Ishibashi states.

The topological one-point functions are encoded in the Ramond terms that appear in the

last line and note that they match the ansatz (4.15), that was motivated by spacetime

considerations in section 4. In the NS sector there are only untwisted sector contributions.

If we substitute θ ≡ M
2 π , the boundary state takes the right form for a brane with a Wilson

line θ : in particular if θ = π we see that a negative sign appears in front of the terms that

contain the sum over odd winding sectors.

Similarly, we can write the boundary state for a brane wrapping the cycle (b) in figure 2.

In this case we need to take the permutation boundary states with L = 0 and M = −2,−4 ,

corresponding to the two choices of Wilson line. Repeating the steps that led to (5.13), we

get

|[0,{M = −2,−4}, 0, 0]〉 =

1

2
√

2

[

||0, 0; 0, 0〉〉NS + ||2, 0; 0, 0〉〉Z4
NS + ||1, 1;−1, 1〉〉Z4

NS + ||0, 2; 0, 0〉〉Z4
NS + ||1, 1; 1,−1〉〉Z4

NS

− ||1, 0; 0, 0〉〉Z4
NS + (−1)

M
2

+1 ||0, 1; 0, 0〉〉Z4
NS + (−1)

M
2

+1 ||1, 0; 0, 1〉〉Z4
NS

+ (−1)
M
2

+1 ||0, 1; 1, 0〉〉Z4
NS − i ||τ ( 2

4
)

01 〉〉R + i
(−1)

M
2√

2
||τ ( 2

4
)

0 〉〉R − i
(−1)

M
2√

2
||τ ( 2

4
)

1 〉〉R

+ i
(−1)

M
2√

2
||σ−( 2

4
)

0 〉〉R + i
(−1)

M
2√

2
||σ−( 2

4
)

1 〉〉R − i ||σ( 2
4
)

01 〉〉R + i(−1)
M
2

√
2 ||σ( 2

4
)

0 〉〉R
]

(5.14)

Again, note that this is consistent with the identification made in section 4. The negative

sign in front of terms that contain a sum over odd momenta arises because the cycle (b) is

displaced by πR with respect to cycle (a) .

5.2 Tensor product boundary states

Let us now come back to the tensor product branes that were discussed briefly in section

3. We know from the computation of one-point-functions in the topological theory that

these branes are not charged under twisted sector fields. Moreover they have moduli, so

they should be identified with (Z4-orbits of) D1-branes on T 2/Z4 that are not constrained

to the orbifold fixed points.
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The boundary states that describe these branes in the minimal model framework are

known [7, 11, 21]. They have the form

|[L1, S1, L2, S2]〉 =
∑

l1,s1,l2,s2

CL1,S1,L2,S2

l1,s1,l2,s2
||[l1, 0, s1] ⊗ [l, 0, s2]〉〉σ , (5.15)

with

CL1,S1,L2,S2

l1,s1,l2,s2
=

1

2
√

2

(

e−iπ
S1s1

2
sin[π4 (L1+1)(l1+1)]

√

sin[π4 (l1 + 1)]
+e−iπ

(S1+2)s1
2

sin[π4 (3 − L1)(l1 + 1)]
√

sin[π4 (l1 + 1)]

)

×
(

e−iπ
S2s2

2
sin[π4 (L2 + 1)(l2 + 1)]

√

sin[π4 (l2 + 1)]
+ e−iπ

(S2+2)s2
2

sin[π4 (3 − L2)(l2 + 1)]
√

sin[π4 (l2 + 1)]

)

. (5.16)

In (5.15) the sum runs over li + si ∈ 2Z . The equivalence relation has been used to set

m1 = m2 = 0 , so we sum over all values of s1, s2 . As for the permutation boundary states,

we set S1 = S2 = 0 for consistency with the LG boundary conditions. The map between

these boundary states and the tensor product factorizations is [11, 21]

|[L1, 0, L2, 0]〉 ↔ (F1 = Y L1+1
1 ) ⊗ (F2 = Y L2+1

2 ) , (5.17)

where on the right hand side the notation refers to the tensor product of LG factorizations,

mentioned in section 3.

The boundary state (5.15) satisfies the B-type boundary conditions

(T1 − T̄1)|B〉 = 0 (T2 − T̄2)|B〉 = 0

(G±
1 + iη Ḡ±

1 )|B〉 = 0 (G±
2 + iη Ḡ±

2 )|B〉 = 0 (5.18)

(J1 + J̄1)|B〉 = 0 (J2 + J̄2)|B〉 = 0 ,

which written in terms of T 2/Z4 currents become

(T − T̄ )|B〉 = 0 (G± + iη Ḡ±)|B〉 = 0 (5.19)

(Q − Q̄)|B〉 = 0 (J − J̄)|B〉 = 0 .

Comparing these relations with (5.2) we see, as anticipated, that the only difference between

the two is in the boundary condition along the circle associated with the U(1) currents J

and J̄ .

Let us look in more detail at the boundary state with L1 = L2 = 0 . This corresponds

to the matrix factorization (3.3) which, as was pointed out earlier, generates all other tensor

product branes as bound states. As we did before, using the dictionary given in table 6 in

the appendix, we can translate the corresponding boundary state (5.15) into a boundary

state on T 2/Z4 :

|L1 = 0, 0, L2 = 0, 0]〉 = ||0, 0; 0, 0〉〉NS + ||0, 1; 0, 1〉〉Z4
NS + ||1, 0; 1, 0〉〉Z4

NS

+
1

2

[

||2, 0; 0, 0〉〉Z4
NS + ||1, 1;−1, 1〉〉Z4

NS + ||0, 2; 0, 0〉〉Z4
NS + ||1, 1; 1,−1〉〉Z4

NS

]

+
√

2
[

||σ−( 2
4
)

0 〉〉R + ||σ−( 2
4
)

1 〉〉R
]

.

(5.20)
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Not all winding and momentum sectors appear in this case: for example, the sectors

with one unit of momentum or one unit of winding are not included. The reason is that

the corresponding Ishibashi states do not respect the boundary condition on J . The

boundary state (5.15) is thus only consistent at the self-dual radius. There is a twisted

sector contribution in the Ramond sector, but since the corresponding primary field is

not a ground state the brane does not carry twisted sector charge and it is therefore not

constrained to the fixed points. Finally, note that the normalization is consistent with the

conjecture of section 3 that this boundary state should describe the superposition of two

branes6.
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A. Details of the map between A2 ⊗ A2 and T 2/Z4 primary fields

This appendix contains a summary of the map between the primary fields of A2 ⊗ A2 and

T 2/Z4 . Some facts about N = 2 minimal models are stated when needed; for a more

complete review see [34 – 36].

The primary fields of a single A2 minimal model, with their quantum numbers and

representation in terms of free fields, are listed in table 3. They are labeled by (l,m, s) ,

with l = 0, 1, 2 , m = −4, . . . ,+3 (mod 8), s = 0,±1, 2 (mod 4). The labels are defined up

to the equivalence relation (l,m, s) ∼ (2 − l,m + 4, s + 2) . In the NS sector s ∈ 2Z and in

the R sector s ∈ 2Z + 1 . Within each sector the quantum number s serves the purpose of

splitting the conformal family into two parts carrying opposite (−1)F eigenvalues; states

with different s are reached by acting with G+ (or G−), with fermion number (−1)F = −1 .

A state labeled by (l,m, s) has dimension and U(1) charge given by

h(l,m,s) =
l(l + 2) − m2

16
+

s2

8
if − l ≤ (m − s) ≤ l

=
l(l + 2) − m2

16
+

s2

8
+

m − s − l

2
if l ≤ (m − s) ≤ 4 − l

q(l,m,s) =
m

4
− s

2
(mod 2) .

(A.1)

6A factor of
√

2 relative to (5.3) comes from the the fact that this brane is extended along the diagonal

of the square torus, as shown from the pattern of winding and momentum quantum numbers that appear

in (5.20).
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J
H
E
P
0
4
(
2
0
0
6
)
0
3
5

(l,m, s) h q
Free Field

Representation

(0, 0, 0) ∼ (2,−4, 2) 0 0 II

(0,−4, 0) ∼ (2, 0, 2) 1 1 ei
√

2φ

(0,−2, 0) ∼ (2, 2, 2) 3
4 −1

2 ε e
− i√

2
φ

(0, 2, 0) ∼ (2,−2, 2) 3
4

1
2 ε e

i√
2
φ

(0, 0, 2) ∼ (2,−4, 0) 3
2 1 ε ei

√
2φ

(0,−4, 2) ∼ (2, 0, 0) 1
2 0 ε

(0,−2, 2) ∼ (2, 2, 0) 1
4

1
2 e

i√
2
φ

(0, 2, 2) ∼ (2,−2, 0) 1
4 −1

2 e
− i√

2
φ

(0,−3,−1) ∼ (2, 1, 1) 9
16 −1

4 ε e
− i

2
√

2
φ

(0,−1,−1) ∼ (2, 3, 1) 1
16

1
4 e

i
2
√

2
φ

(0, 1,−1) ∼ (2,−3, 1) 1 + 1
16

3
4 ε e

i3
2
√

2
φ

(0, 3,−1) ∼ (2,−1, 1) 9
16 −3

4 e
− i3

2
√

2
φ

(0,−3, 1) ∼ (2, 1,−1) 9
16

3
4 e

i3
2
√

2
φ

(0,−1, 1) ∼ (2, 3,−1) 1 + 1
16 −3

4 ε e
− i3

2
√

2
φ

(0, 1, 1) ∼ (2,−3,−1) 1
16 −1

4 e
− i

2
√

2
φ

(0, 3, 1) ∼ (2,−1,−1) 9
16

1
4 ε e

i
2
√

2
φ

(1,−3, 0) ∼ (1, 1, 2) 5
8 −3

4 σ e
− i3

2
√

2
φ

(1,−1, 0) ∼ (1, 3, 2) 1
8 −1

4 σ e
− i

2
√

2
φ

(1, 1, 0) ∼ (1,−3, 2) 1
8

1
4 σ e

i
2
√

2
φ

(1, 3, 0) ∼ (1,−1, 2) 5
8

3
4 σ e

i3
2
√

2
φ

(1, 0,−1) ∼ (1,−4, 1) 5
16

1
2 σ e

i√
2
φ

(1,−2,−1) ∼ (1, 2, 1) 1
16 0 σ

(1, 0, 1) ∼ (1,−4,−1) 5
16 −1

2 σ e
− i√

2
φ

(1,−2, 1) ∼ (1, 2,−1) 1 + 1
16 1 σ ei

√
2φ

Table 3: Primary fields of a single A2 minimal model. For every allowed set of quantum numbers

(l, m, s) ∼ (2 − l, m + 4, s + 2) we have listed the corresponding conformal dimension and U(1)

charge (it is understood that h̄ = h and q̄ = q ). The free field representation is written in terms

of a free boson φ and, for the fermionic component, the Ising variables σ and ε. Note that the

labels (0, 0, 2) and (0, 1, 1) correspond, respectively, to the supercurrent G+ (since ε = ψψ̄) and the

spectral flow operator.

The chiral primaries are those with quantum numbers (l, l, 0) ∼ (2 − l, l + 4, 2) . The

spectral flow operator is e
− i

2
√

2
φ

, with quantum numbers (0, 1, 1) , so under spectral flow

(l,m, s) → (l,m + 1, s + 1) . This means that the Ramond ground states related to the

chiral primaries by spectral flow have quantum numbers (l, l + 1, 1) ∼ (2 − l, l − 3,−1) .

The primary fields of A2 ⊗ A2 are obtained taking products of primary fields of the

two minimal models. The NS primaries are listed in table 4.

– 25 –



J
H
E
P
0
4
(
2
0
0
6
)
0
3
5

(h, q) (l1,m1, s1) (l2,m2, s2)
Free Field

Representation

(0, 0) (0, 0, 0) (0, 0, 0) II

(1
4 , 0) (1, 1, 0) (1,−1, 0) σ1e

+ i
2
√

2
φ1 σ2e

− i
2
√

2
φ2

(1,−1, 0) (1, 1, 0) σ1e
− i

2
√

2
φ1 σ2e

+ i
2
√

2
φ2

(1
2 , 0) (2, 0, 0) (0, 0, 0) ε1

(0, 0, 0) (2, 0, 0) ε2

(2, 2, 0) (2,−2, 0) e
+ i√

2
φ1 e

− i√
2
φ2

(2,−2, 0) (2, 2, 0) e
− i√

2
φ1 e

+ i√
2
φ2

(1, 0) (2, 0, 0) (2, 0, 0) ε1 ε2

(1
8 ,±1

4) (1,±1, 0) (0, 0, 0) σ1e
± i

2
√

2
φ1

(0, 0, 0) (1,±1, 0) σ2e
± i

2
√

2
φ2

(1
4 ,±1

2) (2,±2, 0) (0, 0, 0) e
± i√

2
φ1

(0, 0, 0) (2,±2, 0) e
± i√

2
φ2

(1,±1, 0) (1,±1, 0) σ1e
± i

2
√

2
φ1 σ2e

± i
2
√

2
φ2

(3
8 ,±3

4) (1,±1, 0) (2,±2, 0) σ1e
± i

2
√

2
φ1 e

± i√
2
φ2

(2,±2, 0) (1,±1, 0) e
± i√

2
φ1 σ2e

+± i
2
√

2
φ2

(1
2 ,±1) (2,±2, 0) (2,±2, 0) e

± i√
2
φ1 e

± i√
2
φ2

(3
8 ,±1

4) (1,∓1, 0) (2,±2, 0) σ1e
∓ i

2
√

2
φ1 e

± i√
2
φ2

(2,±2, 0) (1,∓1, 0) e
± i√

2
φ1 σ2e

∓ i
2
√

2
φ2

(5
8 ,±1

4) (1,±1, 0) (2, 0, 0) σ1e
± i

2
√

2
φ1 ε2

(2, 0, 0) (1,±1, 0) ε1 σ2e
± i

2
√

2
φ2

(3
4 ,±1

2) (2,±2, 0) (2, 0, 0) e
± i√

2
φ1 ε2

(2, 0, 0) (2,±2, 0) ε1 e
± i√

2
φ2

Table 4: Primary fields of A2 ⊗ A2 in the NS sector. Only the fields with s1 = s2 = 0 have been

included: the remaining fields are obtained from these acting with the supercurrents G+
1,2 . Those

listed between the two horizontal lines are the chiral/anti-chiral primaries, depending on the sign

of q .

The A2 ⊗ A2 primaries are in one-to-one correspondence with the primaries of the

T 2/Z4 CFT, as a consequence of the map between the conformal algebra of the two models

described in section 2. For the NS sector the correspondence was worked out in [3], but for

the boundary state discussion of section 5 the map needs to be slightly refined. We adopt

the notation

Vm1,w1;m2,w2 = e
i√
2
(m1x1+m2x2+w1x̃1+w2x̃2)

(A.2)

for a primary field that creates a state with mi units of momentum (i = 1, 2 labels the

directions on T 2) and wi units of winding. Here xi = xi
L + xi

R and x̃i = xi
L − xi

R . We

denote by eikB/4σ(k
4
) the primary field that creates the vacuum in the k-th twisted sector.

See section 2 and figure 1 for a brief discussion of the twisted sectors. The twist fields
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J
H
E
P
0
4
(
2
0
0
6
)
0
3
5

(h, q) T 2/Z4 Vertex Operator

untwisted sector: (1
4 , 0) V Z4

1,0;0,0 ≡ 1
2(V1,0;0,0 + V0,0;1,0 + V−1,0;0,0 + V0,0;−1,0)

V Z4
0,1;0,0 ≡ 1

2(V0,1;0,0 + V0,0;0,1 + V0,−1;0,0 + V0,0;0,−1)

(1
2 , 0) V Z4

1,0;1,0 ≡ 1
2(V1,0;1,0 + V−1,0;1,0 + V−1,0;−1,0 + V1,0;−1,0)

V Z4
1,0;0,1 ≡ 1

2(V1,0;0,1 + V0,−1;1,0 + V−1,0;0,−1 + V0,1;−1,0)

V Z4
0,1;0,1 ≡ 1

2(V0,1;0,1 + V0,−1;0,1 + V0,−1;0,−1 + V0,1;0,−1)

V Z4
0,1;1,0 ≡ 1

2(V0,1;1,0 + V−1,0;0,1 + V0,−1;−1,0 + V1,0;0,−1)

(1, 0) 1
2(V Z4

2,0;0,0 + V Z4
1,1;−1,1 + V Z4

0,2;0,0 + V Z4
1,1;1,−1)

≡ 1
4

[

(V2,0;0,0 + V0,0;2,0 + V−2,0;0,0 + V0,0;−2,0)

+ (V1,1;−1,1 + V1,−1;1,1 + V−1,−1;1,−1 + V−1,1;−1,−1)

+ (V0,2;0,0 + V0,0;0,2 + V0,−2;0,0 + V0,0;0,−2)

+ (V1,1;1,−1 + V−1,1;1,1 + V−1,−1;−1,1 + V1,−1;−1,−1)
]

(1
2 ,±1) ψ±ψ̄∓

twisted sectors: (1
8 ,±1

4 ) e±iB/4σ
±( 1

4
)

0 , eiB/4σ
±( 1

4
)

1

(1
4 ,±1

2 ) e±iB/2σ
±( 2

4
)

0 , e±iB/2σ
±( 2

4
)

1 , e±iB/2σ
±( 2

4
)

01

(3
8 ,±3

4 ) e±i3B/4σ
±( 3

4
)

0 , e±i3B/4σ
±( 3

4
)

1

(3
8 ,±1

4 ) eiB/4τ
±( 1

4
)

0 , eiB/4τ
±( 1

4
)

1

(3
4 ,±1

2 ) eiB/2τ
±( 2

4
)

0 , eiB/2τ
±( 2

4
)

1 , eiB/2τ
±( 2

4
)

01

Table 5: Primary fields of T 2/Z4 in the NS sector. Here the convention is h̄ = h and q̄ = −q .

We distinguish the Z4 orbit of an operator with the specified winding and momentum with a

superscript Z4 . The notation σ±( k

4
) denotes twist fields associated with rotations by ω±k , while

τ±( k

4
) are the excited twist fields defined as in (A.3). Note that in fact the twist fields eiB/2τ ( 2

4
) are

not independent primaries, since one can check that (τ
( 2

4
)

0 + τ
( 2

4
)

1 ) ∼ (G+
1 + G+

2 ) · (σ−( 2

4
)

0 + σ
−( 2

4
)

1 ) .

associated with an inverse Z4 rotation are denoted by e−ikB/4σ−(k
4
) . In addition to these,

the list of primary fields includes some excited twist fields e±ikB/4τ±(k
4
) , defined by [30]

∂x+(z)σ±(k
4
)(0) ∼ zk/4−1τ±(k

4
)(0) + · · · . (A.3)

With these conventions, the primary fields of T 2/Z4 in the NS sector are those listed

in table 5. Note that the list contains only a finite subset of all the vertex operators

that create winding and momentum sectors. All other Z4-invariant vertex operators are

obtained from those in this list by acting with the U(1) current (2.2) associated with the

enhanced symmetry at the self-dual radius, so with respect to the enlarged chiral algebra

that includes J (and J̄) they can be treated as descendants.

As explained in section 2, the operators of the minimal model map to linear combi-

nation of T 2/Z4 operators with definite U(1) charge, but there is a small technical point
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J
H
E
P
0
4
(
2
0
0
6
)
0
3
5

A2 ⊗ A2 labels T 2/Z4 primary fields

(1, 1, 0) ⊗ (1,−1, 0) 1√
2
e−iπ/4(V Z4

1,0;0,0 + iV Z4
0,1;0,0)

(1,−1, 0) ⊗ (1, 1, 0) 1√
2
eiπ/4(V Z4

1,0;0,0 − iV Z4
0,1;0,0)

(2, 0, 0) ⊗ (0, 0, 0) 1
2(V Z4

1,0;1,0 + V Z4
0,1;0,1 + V Z4

1,0;0,1 − V Z4
0,1;1,0)

(0, 0, 0) ⊗ (2, 0, 0) 1
2(V Z4

1,0;1,0 + V Z4
0,1;0,1 − V Z4

1,0;0,1 + V Z4
0,1;1,0)

(2, 2, 0) ⊗ (2,−2, 0) 1
2(+iV Z4

1,0;1,0 − iV Z4
0,1;0,1 + V Z4

1,0;0,1 + V Z4
0,1;1,0)

(2,−2, 0) ⊗ (2, 2, 0) 1
2(−iV Z4

1,0;1,0 + iV Z4
0,1;0,1 + V Z4

1,0;0,1 + V Z4
0,1;1,0)

(2, 0, 0) ⊗ (2, 0, 0) 1
2(V Z4

2,0;0,0 + V Z4
1,1;−1,1 + V Z4

0,2;0,0 + V Z4
1,1;1,−1)

(1,±1, 0) ⊗ (0, 0, 0) e±i3π/8 e±iB/4
√

2
(σ

±( 1
4
)

0 − iσ
±( 1

4
)

1 )

(0, 0, 0) ⊗ (1,±1, 0) e±iπ/8 e±iB/4
√

2
(−iσ

±( 1
4
)

0 + σ
±( 1

4
)

1 )

(2,±2, 0) ⊗ (0, 0, 0) e±i3π/4 e±iB/2

2 (+iσ
±( 2

4
)

0 − iσ
±( 2

4
)

1 +
√

2σ
±( 2

4
)

01 )

(0, 0, 0) ⊗ (2,±2, 0) e±iπ/4 e±iB/2

2 (−iσ
±( 2

4
)

0 + iσ
±( 2

4
)

1 +
√

2σ
±( 2

4
)

01 )

(1,±1, 0) ⊗ (1,±1, 0) e±iπ/2 e±iB/2
√

2
(σ

±( 2
4
)

0 + σ
±( 2

4
)

1 )

(1,±1, 0) ⊗ (2,±2, 0) e∓iπ/8 e±i3B/4
√

2
(σ

±( 3
4
)

0 − iσ
±( 3

4
)

1 )

(2,±2, 0) ⊗ (1,±1, 0) e∓iπ/8 e±i3B/4
√

2
(−iσ

±( 3
4
)

0 + σ
±( 3

4
)

1 )

(2,±2, 0) ⊗ (2,±2, 0) ψ±ψ̄∓

(1,∓1, 0) ⊗ (2,±2, 0) e±i3π/8 e±iB/4
√

2
(τ

±( 1
4
)

0 − iτ
±( 1

4
)

1 )

(2,±2, 0) ⊗ (1,∓1, 0) e±iπ/8 e±iB/4
√

2
(−iτ

±( 1
4
)

0 + τ
±( 1

4
)

1 )

(2,±2, 0) ⊗ (2, 0, 0) e±i3π/4 e±iB/2

2 (+iτ
±( 2

4
)

0 − iτ
±( 2

4
)

1 +
√

2τ
±( 2

4
)

01 )

(2, 0, 0) ⊗ (2,±2, 0) e±iπ/4 e±iB/2

2 (−iτ
±( 2

4
)

0 + iτ
±( 2

4
)

1 +
√

2τ
±( 2

4
)

01 )

Table 6: Relation between A2 ⊗ A2 labels and T 2/Z4 primary fields in the NS sector.

that should be mentioned for clarity. There is a phase ambiguity, since each eigenvector

of the U(1) charge matrix can be multiplied by an arbitrary phase. This phase becomes

significant when one tries to compare the results for various boundary observables with

the minimal models/LG side. The map between LG variables and T 2/Z4 chiral primaries

is given in section 2. However, comparing the results for the disc one-point functions one

finds that they match only upon introducing some nontrivial phases in the definition of

the A2 ⊗ A2 Ishibashi states (see section 5). Note that this does not affect any overlap

computations. After fixing these phases for the chiral primaries to match the LG results,

the ambiguity is fixed for all the other primary fields, simply requiring consistency of the

OPE’s. A different choice of phases would presumably give a basis of branes different from

the one picked out by the Landau-Ginzburg factorizations.

Taking into account the few subtleties just mentioned, the map that we adopt to relate
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H
E
P
0
4
(
2
0
0
6
)
0
3
5

(l1,m1, s1)⊗(l2,m2, s2) q Free Field Rep. T 2/Z4 RR Ground States

(0, 1, 1)⊗(0, 1, 1) −1
2 e

i
2
√

2
(φ1+φ2) |0〉(0)R,−

(0,−1,−1)⊗(0,−1,−1) 1
2 e

− i
2
√

2
(φ1+φ2) |0〉(0)R,+ ≡ ψ+

0 ψ̄−
0 |0〉R,−

(1, 2, 1)⊗(0,−1,−1) 1
4 σ1 e

i
2
√

2
φ2 ei3π/8

√
2

(σ
( 1
4
)

0 − iσ
( 1
4
)

1 )|0〉(
1
4
)

R

(0,−1,−1)⊗(1, 2, 1) 1
4 σ2 e

i
2
√

2
φ1 eiπ/8

√
2

(σ
( 1
4
)

1 −iσ
( 1
4
)

0 )|0〉(
1
4
)

R

(0, 1, 1)⊗(0,−1,−1) 0 e
i

2
√

2
(φ1−φ2) eiπ/4

√
2

(−iσ
( 2
4
)

0 + iσ
( 2
4
)

1 +
√

2σ
( 2
4
)

01 )|0〉(
2
4
)

R

(0,−1,−1)⊗(0, 1, 1) 0 e
i

2
√

2
(φ2−φ1) ei3π/4

√
2

(+iσ
( 2
4
)

0 − iσ
( 2
4
)

1 +
√

2σ
( 2
4
)

01 )|0〉(
2
4
)

R

(1, 2,−1)⊗(1, 2, 1) 0 σ1σ2
i√
2
(σ

( 2
4
)

0 + σ
( 2
4
)

1 )|0〉(
2
4
)

R

(0, 1, 1)⊗(1, 2, 1) −1
4 σ2 e

− i
2
√

2
φ1 e−iπ/8

√
2

(σ
( 3
4
)

1 − iσ
( 3
4
)

0 )|0〉(
3
4
)

R

(1, 2, 1)⊗(0, 1, 1) −1
4 σ1 e

− i
2
√

2
φ2 e−iπ/8

√
2

(σ
( 3
4
)

0 − iσ
( 3
4
)

1 )|0〉(
3
4
)

R

Table 7: Ramond ground states, related by spectral flow to the chiral primary fields in the NS

sector. The first column contains the minimal model labels and the free field representation is given

in the third column. In the last column we have listed the corresponding ground states of the T 2/Z4

model. Note that they belong to the (2− 4q)-th twisted sector, where q is the U(1) charge (second

column). The superscript in |0〉(
k

4
)

R signals that the state is created from the NS vacuum by the

modified spin field ei( k

4
− 1

2
)B appropriate for the k-th twisted sector [30], so that all the states listed

above have the same conformal dimension.

the A2 ⊗ A2 quantum numbers to the T 2/Z4 primary fields in the NS sector is given in

table 6. It is also important to know the map for the Ramond ground states, since these

are related by spectral flow to the chiral primary fields. This map is given in table 7.
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